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Two-dimensional external viscous flows are numerically approxi-
mated. by means of a domain decomposition technique which
combines a vortex method and a finite differences method. The vortex
method is used in the flow region which is dominated by convective
effects, whereas the finite differences method is used in the flow region
where viscous diffusion effects are dominant. Meanwhile, a new vortex
method which is suitable for approximating first- order linear hyperbolic
problems supplemented with Dirichlet boundary conditions is
presented. Comparison with numerical and experimental data show
that the method is well adapted for calculating two-dimenstonal
external flows at moderate Reynolds numbers.  © 1993 Academic Press, Inc.

1. INTRODUCTION

Consider a fluid domain € in R? Denote by L the macro-
scopic length scale of 2, and denote by u,_ the velocity scale
of the flow. Assume the fluid motion is incompressible
and satisfies Navier—Stokes equations. Denote the fluid’s
kinematic viscosity by v and the Reynolds number by
Re :=u,, Ljv. It is well known that the laminar dissipation
scale of the fluid motion is of order L/Re'2. Hence, in order
to resolve the dissipation scale, every numerical method
that is based on an Eulerian description of the flow, that is
with a fixed, nonadaptive grid, requires a number of grid
points that is of @#(Re). As a consequence, capacities of
computers are rapidly exceeded as the Reynolds number
increases, Hence, alternative approaches must be found for
moderate and high Reynolds numbers.

For external flows at moderate and high Reynolds num-
bers, vorticity concentrates in boundary layers and wakes
whose characteristic length scale is of order L/Re'”. Vortex
methods, introduced by Chorin [2], are based on the
Lagrangian formulation of Navier-Stokes equations and
are known for tracing vorticity. Therefore, this class of
method naturally concentrates discretization points in the
regions of interest. As a result, we may infer that vortex
methods would need only ¢(Re'?) discretization points to
capture the dissipation scale, so they would be better
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candidates for describing external flows for which con-
vection dominates viscous diffusion than the methods that
are based on the Eulerian formulation of Navier-Stokes
equations. Unfortunately, the major drawback of vortex
methods is that boundary conditions cannot be easily
prescribed; besides, they may be inaccurate in the flow
regions where viscous effects dominate convective effects.
The reader is referred to Chorin [2], Leonard [10], and
Raviart [13] for reviews on vortex methods.

Conversely, methods that are based on the Eulerian for-
mulation of Navier-Stokes equations (that is to say, finite
differences methods, finite element methods, and the like)
are well adapted for taking into account various forms of
boundary conditions. Furthermore, they are highly efficient
when applied on bounded domains and are particularly
efficient in the regions where the elliptic nature of the flow
is dominant (i.e., viscous effects dominate convective
effects). Hence, this class of methods should be the natural
counterpart of vortex methods.

The purpose of the present paper is to report on a domain
decomposition technique that is based on the ideas above
for calculating two-dimensional external flows at moderate
Reynolds numbers. The flow domain is decomposed into
two subdomains. Near the solid boundary, where viscous
effects are dominant, the fluid motion is approximated by
means of a finite differences scheme, far from the solid
boundary, where convection is dominant, the flow is
maodelled by a vortex method (see Cottet [3] and Huberson
et al. [8]), Shen [14]). The outline of the paper is as
follows: In Section 2 we present the domain decomposition
method, special emphasis is put on the time discretization
and the coupling conditions. A theoretical presentation of a
particle method that can take into account Dirichlet data
is done in Section 3. Its numerical implementation is
presented in Section 4. The finite differences technique
which is used in the inner subdomain is reviewed in Section 5.
Comparisons with experimental and other numerical results
are reported in the sixth section.
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2. THE DOMAIN DECOMPOSITION METHOD

2.1. Introduction

The present approach is based on the domain decomposi-
tion method without overlapping [8,9,12,14]. For a
review on the domain decomposition techniques, the reader
is referred to the proceedings of the “International
Symposiums on Domain Decomposition Methods for
Partial Differential Equations™ which have been held yearly
since 1987. Introductions of some demain decomposition
methods for viscous flow problems can be found in Quar-
teroni [ 12] and Le Tallec [9]. Recali that the advantages of
the domain decomposition technique are twofold: well-
adapted numerical approximations can be used in each sub-
domain and each subdomain’s solution can be calculated in
parailel.

2.2. Formulation of the Problem

Let (i, j, k) be a direct, orthogonal, normed basis of R,
R* is embedded in R* so that (i, j) is a direct, orthogonal,
normed- basis of R2. Consider Oxy a cartesian coordinate
system associated with the basis (i, j). Denote by 2 the
unbounded fluid domain; assume that the boundary of £ is
homeomorphic to a circle, ie., £2 is one-connected (a
domain is said to be p-connected if its fundamental group
has p generators, i.e., in 2D the domain has p heles). Denote
by B, the boundary of £2; the complement of €2 is referred to
as the obstacle, see Fig. 1 for details of the notations.
Assume that at infinity the fluid is moving with the velocity
u_.(r) which is parallel to the Ox axis and which magnitude
may vary in time. The obstacle is assumed to be at rest in the
coordinate system Oxy.

Define (£2,, £2,) a partition of & so that the obstacle has
no boundary in common with 2, and @, is homeomorphic
to a ring (see Fig. 1). Denote by I'| the interface between €2,
and @, . Henceforth, we solve the Navier—Stokes problem in
£2, and in £2, in parallel.

In the domain 2, the problem is formulated in terms of
velocity and vorticity {u, w). I the whole fluid domain was
to be considered, the system of equations to be solved would
read

%%+V-(wu) = vV
Vxu = wk
Vau=20
(2.1)
u=2=0 on B,
w
—dl =0
4[31 on
u—=s u,(1)

GUERMOND, HUBERSON, AND SHEN

Defimition of notations.

FIG. 1,

In the following, the (u, <) formulation is restricted to the
domain Q.

In the domain £, the problem is formulated in terms of
stream function and vorticity (¥, w). Recall that incom-
pressibility, together with the condition {p u-ndi=0,
implies that there is a stream function ¥ so that u=
V x (i#k), where n is the outward unit normal to the
obstacle’s boundary. The (y, w) formulation of Navier-
Stokes equations in the whole fluid domain, 2, reads:

%?+V-(w\7x (Wk))=v Vi

Vi =—w

Y=g, on B,
{2.2)

d
5%:0 on B,

do

Bl—a;dl—o

Y=u,(t)yx-j+o(l) as  |x| — co.

The condition [, dw/én dl =0 is necessary to ensure that
the pressure is a uniform function. Indeed, it is this very
condition that imposes the value of the stream function,
i ,, on the boundary B,. Henceforth, we restrict the (¢, »)
formulation to the bounded domain £2,.

Let 7= 0 and N be an integer; the solution is sought in
the time interval [0, T1. We set 1= T/N and 1, =k &t for
0< k< N. Assume that {(u}, w)) and (!, w}) are known
approximations of (u, @) and (¥, w) in domains 2, and 2,
on time intervals (f,_,, {;) for 1 </< k< N—1; we wish to
define approximations of {u, @) and (¥, @) in domains £,
and £2, on the time interval (2, 1, ,)-

2.3, Solution in Q4

In the following, we restrict the (u, w) formulation to the
domain ,, and the partition of £ is assumed to be chosen
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so that in £, viscous diffusion is dominated by convection.
Furthermore, in £2, the Navier-Stokes problem is solved by
means of a particle method. This kind of method roughly
consists of advecting and diffusing information along the
flow’s characteristics. One advantage of such a procedure is
that stability is not greatly spoiled when the velocity field is
discretized explicitly in time. As a result, the convection-dif-

fusion equation governing w{*' is hereafter approximated
by
a k+1
(Uaut +V_(wg+1ﬁk+1):vvzwg+1’ (2.3)

where @** ' = u* for a first-order approximation in time or
i** 1 = (3u* —n* ~!)/2 for a second-order approximation in
time. For each time step the velocity field is given by Biot
and Savart’s law,

w(y) VG(y — x) < k do,

W) =u, (1) + | (24)

5w 52

where G(y —x) := 1/2n log(]y — x}) is Green’s function of
Laplace’s operator in R> It is shown in Section 4 how
Egs. (2.3) and (2.4) can be discretized by means of a particle
method. Note that, since velocity is explicit with respect to
time and viscous diffusion is small, Eq. (2.3) may be viewed
in a first approximation as a linear hyperbolic equation.
Transmission of information between subdomains €2, and
€2, is hereafter based on this remark.

Wellposedness of the problem on the vorticity requires
some transmission condition between w, and w, to be
enforced across the interface I',. The condition in question
is dictated by the fact that, since viscosity is small, w&*' is
the solution to a first-order hyperbolic problem in a first
approximation. Recall that for this kind of PDE, the bound-
ary value of wf ™! is imposed only on the part of ', where
the flow enters £2, (upwind boundary condition ); on the rest
of the boundary w&*!' is computed by solving the partial
differential equation (2.3) on 2, (downwind condition).
Therefore, a boundary condition must be specified on the
subset of I, where the velocity, u*, is such that v* .ng <0,
where ny is the unit cutward normal to the boundary of 2.
On the subset of I'";, where u* - n, > 0, the value of w5+ is
computed by solving (2.3). For further details on the
domain decomposition technigue for hyperbolic problems,
the reader is referred to Le Tallec [9] and Quarteroni [12].

In view of the remarks above, the transmission condition
that is needed reads

Onroft ' =wf(x—0ru*)+O(v dr), if v*.ny<0.

(2.5)

This transmission condition is only first-order accurate in
time. A transmission condition that is second-order
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accurate in time can be obtained by looking for an
approximate parabolic decomposition of the advection-
diffusion operator as shownin [1].

In conclusion, the problem to be solved in €2, reduces to
solving the almost hyperbolic equation (2.3} supplemented
with the transmission condition (2.5), the velecity field
being given by Biot and Savart’s law (2.4).

2.4, Solution in Q,

In the inner domain £, the system of partial differential
equations to be selved reads

Nt
Ow'|

gt

+V (W R =y P!
(2.6}
Vpk i gt

This system is supplemented with the following boundary
conditions on B, :

gt =g dl=0. (27

awlr+l_0 J awif+l
’ on 8 on
Furthermore, the (y, «)} formulation of the Navier-Stokes
problem being restricted to the bounded domain £2,, the
conditions at infinity on i, which appear in (2.2), must be
replaced by transmission conditions on i and .

Since whatever the flow nature {convective, diffusive, or
both) the stream function is always the solution to an
elliptic problem (V3= —w), a transmission condition is
required on the whole boundary [7,. This transmission
condition may be of Dirichlet, Neumann, or Robin type. A
condition of Dirichlet type seemed natural to us; that is, we
chose to impose ¥ on I',. One way to compute Y% *' on I,
consists of using Green’s third identity; in other words, for
all x in I, the boundary value % *'(x) is given by

VR =t )X i= [ Gly—x)efy) de

Dopu 2

ket [ 9GLY —x)

s L. . (28)
This transmission condition is first-order accurate in time.
Note also that it is of integral type; as a result, it transmits
the whole spectrum of information from 2, to 2, at once,
whereas classical Dirichlet—-Neumann coupling conditions
poorly transmit low frequencies (sece Quarteroni [127 for
further details on the Dirichlet-Neumann technique). It is
shown in Section 5 how (2.8) can be discretized by means of
a particle method.

Let us now determine some transmission condition for
the vorticity, From the analysis of the problem in Q,, it has
been shown that w’ ™' is necessarily imposed on the subset
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of I, where the flow enters 2,. Hence, the transmission
condition on the vorticity w**' must be computed by
solving (2.3) approximately; in other words, w* ™' is given
by a first-order accurate upwind integration,

On I ef '(x)=wi(x —dru*)+ Oy é1),

it u.ny>0. (2.9

Furthermore, since we want to approximate e® *' in 2, by
means of a numerical technique which 1s well adapted to
elliptic problems, namely finite differences or finite elements,
we also need to specify a boundary condition on @, on the
part of I'|, where the flow goes out of 22,. The boundary
condition in question can by no means be obtained from
Q,, for in 2, the problem is hyperbolic and for such a flow
information cannot go upwind. Consequently, the piece of
information that is required must be looked for in the
upwind direction in £,. The natural way of doing so still
consists of assuming that in the vicinity of F; the flow is
dominated by convective effects; hence, in the vicinity of I'
w? ™! is locally solution to a first-order hyperbolic equation
of type (2.3), and wf ™' is given once more by an upwind
integration of the type

@t (x) = @k(x — duuk) + O(v 8t (2.10)

Note that this condition is not a transmission condition
since it does not use information coming from the domain
Q,. The condition (2.10) is merely required for computing
convenience.

In conclusion, in domain £, the boundary condition on
w* ! reads

k1 (x) =k (x ~ 5t &) + O(v 81),
(2.11)

Forallxe |,

where ©¥ =w} if v*.n, <0 (transmission condition) and
@f = w% if u* -n, 2 0 (boundary condition), and n, denotes
the unit outward normal to the boundary of £2,. Note that
no = - nl -

3. PARTICLE APPROXIMATION IN Q,

3.1. Statement of the Problem

Recall that in domain €, at each time step (¢, f; 4, ). the
vorticity field is solution to the almost-hyperbolic equation
(2.3), where the velocity field is explicitly given by formula
(2.4). Actually the model problem to be solved can be cast
into the form

%—C;J+V-(uu)=f(x, ?)
wfx, =0 for xef, 3.1)
w(x, t)=w,(x, t} for xe;suchthatu-n,<0,
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where the velocity field is known at all times in the domain
,. As mentioned in the introduction, we wish to solve (3.1)
by means of a particle method. The difficuity at this point is
that classical particle methods cannot account for Dirichitet
conditions (see Raviart [13] for an analysis of particle
methods). In order to overcome this difficulty, the classical
technique of particle methods [[13] has been modified and
a somewhat new approach is proposed in the sequel.

Before solving problem (3.1), we need to discuss the
representation of functions in Lagrange coordinates,
together with their approximation by means of measures.
For this purpose we introduce some notations.

Let 062, =1, x [0, T] and denote by dQ27 and d§2} the
subsets of 802+ for which u.-n,<0 and w-n, >0, respec-
tively. Consider £2,% 0, T[ as an open cylinder in R and
extend the definition of the normal 4, to the boundary of
this cylinder. Define the generalized flow field @(x, ¢)=
(u{x, 1), 1)in 2,x 0, T[ and set A~ =027 U (2,x {0})
and A+ =8Q7F U (R2yx {T}). The subset A~ and A are
such that @-n, <0 and &-f, >0, respectively; that is, the
generalized flow field & enters the cylinder €,x 0, T[
through A~ and exits it through A *.

Since €, is regular (say Lipschitzian) and w(x, ¢) is
smooth (say continuous with respect to (x, 1) and Lipschit-
zian with respect to x), for every couple (x, 1)in 4% 30, Tt
there are two couples (7, 17 )and (", t")in A~ and A ™,
respectively, so that the characteristic curves of the
generalized flow @ which passes at {x, ¢} crosses A~ and A
at (7, t7 ) and (&*, ©), respectively. Denote by - 4~ x
10, 7{ — 2,, the mapping, so that $(§~, 77, /)=x. The
mapping ¥ is such that

i
di

wE T, 1,1 =E"
Consider the time as a fixed parameter and define the

mapping ¢: (E7, t " hox=y(§7, 77, 1) Let J(§7, 17, 1)
be the jacobian determinant of the mapping ¥,. A classical
caleulation yiclds

=u(x, 1), oK T

(3.2)

%{(é*,‘c’,t)=J(§‘,t‘,t)V-u(x,t). (3.3}

Since in the present case the velocity field is divergence free,
Jis known at all times, T~ << 1", if it can be evaluated at
the initial time 7. A simple calculation shows that

JE,0,0)=1, if (§7,17)eR,x {0}
JE Tt )=—u-n,, if (§7,77)ed2,.

(3.4)
(3.5)

3.2. Particle Approximation of Functions

In the following we look for measure approximations of
smooth functions g: €,x 10, T — R whose geometric sup-
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port in Q, at each time ¢ is such that ' (supp(g(-, 1)) <
0027 ; this kind of function is zero at time ¢ = 0. Note that
the vorticity distribution which is solution to our model
problem (3.1) belongs to the class of functions above.

Assume there exists a quadrature formula over 027 so
that for a certain class of functions ¢(x, t) we have

| e

filo 2

YA dtT =} w8, 1),

jed

(3.6)

where (£, 1, );., are quadrature points and ()., are
positive weights. Then, for every smooth function ¢{x)} with
compact support in £, we have

|, e ootxyax=] gwisx)0

w824

xpW A&, T NJE, T, )

xxd8 T, tT)dE T dr 7, (3.7)

where y, is a step function so that

&7, t7)=0 if (57,7 )¢supp(g(-, ) (3.8)
wE7,7)=1 if (§7, 77 }esupp(g(-, 1)) (3.9)
Hence, seting x, (1) =y(§,7, v, 1) a,(t) = J(§,, T, t),
and x(0)=xA&, . 17), and by using the quadrature
formula (3.6), Eq. (3. 7) reduces to
J,, 800 0 gx)dxx T a(0) 35(1) 80, (1), 1) 9L, (1)
] Jjed
(3.10)

That is, we have approximated the function g by the
measure,

Mg(x, )= 3 a;(t) 7,() g(x, (1), 1) 3(x —x;(1)),  (3.11)
jeJ

where J is the Dirac measure. Indeed, (3.11} is an
approximation, in terms of measures, of the represeptation
of g in Lagrange coordinates. Note that the so-called par-
ticle representation above is similar to the classical particle
representation of functions whose support is not confined to
a subdomain of R {see Raviart [(3]). Actually, the present
representation differs from the classical one in the use of the
clipping functions y,(r). For a given index j, the function
¥, (1) means that the jth particle appears in Q, at tlmc T, at
the location &7, and it disappears at time T at the
location &;".
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3.3. Particle Solution of a Convection Eguation

In order to apply the above considerations to problem
{3.1), we need to evaluate the convective derivative, in the
sense of distributions, of measures of type (3.11). A simple
calculation shows that, if no particular care is taken, the
time derivative of /T%g yields terms which are proportional
to 8(r—t,;" }and 6(r — 1;* ). These terms are generated by the
clipping function; as a result, in order to prevent the
occurrence of such terms, the clipping function has to be
regularized. In other words, a suitable particle approxima-
tion of the solution to {3.1) should be of the form,

M olx, =3 a1 w,(1) 6(x —x,(1)),

jed

{3.12)

where y;,(¢) are the regularized approximations of the clip-
ping functions and ¢ is a regularization parameter. The fact
that the clipping functions must be regularized means that
the particles are not allowed to appear or disappear all of a
sudden; their strength must grow and decrease smoothly as
they enter the domain or leave it. Now, it can be verified
that, in the sense of distributions on €, x 10, T, we have

e
ot ——+V-(Tlwu)= Zdr(a L) @, (1)) 3(x — x;{1)).

jed

(3.13)

Note that, since the flow field is incompressible, the
coefficients a; are time independent and are given by
= —au(E Ty )ne(§ ) (3.14)
Henceforth, coefficients a; are referred to as the volume of
the jth particle.
If we now define as above a regularized particle
approximation, /7% f, of the source term of problem (3.1), it
is then a simple matter to verify that the particle approxima-

tion of problem (3.1) consists of finding the functions
t+— w,{t) which are solutions to

d
dr D) @0, (1)1 = () F (x;

(1), 1), st}

.

(3.15)
w{t7) =

(&, ;7).

Furthermore, the particie positions x, () are solutions to the
differential equations,

x(D=ulx(r), 1), 1 <I<)

4
dt
x {7 }=E .

(3.16)
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A theoretical analysis of the convergence of the present
particle method, although highly desirable, has not yet been
carried out. Indeed, such an analysis would result in
optimum choices for the regularization of the clipping func-
tions. Up to now the regularized clipping functions have
been chosen by a trial and error procedure (see Sections 4.1
and 4.3 below). In the next section, we present a numerical
implementation of the algorithm above, where the source
term has been replaced by viscous diffusion.

4. NUMERICAL IMPLEMENTATION OF
THE VORTEX METHOD

In the sequel we present a discrete version in time of the
algorithm above (3.12), (3.14), (3.15), and (3.16). Assume
that over the time interval [0, 7,] production and absorp-
tion of particles yielded a set J, of particles. The problem
now consists of calculating approximations of the positions
and strengths of the new set of particles /., , on the time
interval {t¢;, #,,,). The algorithm above may be sum-
marized as follows:

« Smoothly create new particles,

= Convect and diffuse the particles of J, by means of any
proper vortex method.

« Smoothly absorb the outgoing particles.

4.1. Generation of New Particles

We now discuss how new particles are smoothly
generated. Recall that the new particles which enter the
cylinder £, x ]0, [ are generated on the hypersurface
0Q7 atthe points (§, 77 ), Since the velocity field is not
known in advance, the exact geometry of 002, along with
the quadrature points and weights of rule (3.6), cannot be
defined in advance. As a consequence, €27 and the quad-
rature points of rule {3.6) must be constructed progressively
for each time interval (t,, #,, ). For this purpose, let us
partition I, into a series of [ segments of length /.. The
middle of the ith segment is denoted by &;. Let 7 be the
subset of / which consists of the points £, so that

u(E, . ) me(E )< -8, (4.1)

where ¢ is a small positive parameter which prevents
particles of negligible strength to be generated. Henceforth,
the quadrature rule associated with the hypersurface
0027 is defined by the set of quadratures points
(8770 Yier; k=o...n—1 and weights (8/;dt},.,-. where
Ty =6+ 1212

Henceforth, the points (§;),;.; are called spots, and with
each spot are associated two {lags, One flag indicates
whether the spot is active at the present time step, it is
referred to as the activity flag. The other flag indicates

GUERMOND, HUBERSON, AND SHEN

whether the spot is in the process of growing a particle, it is
referred to as the history flag; the particle which is in the
process of growing is referred to as a newborn particle
which is still linked to its generating spot. At time 7, all the
spots’ flags are lowered.

The algorithm for smoothly generating particles during
the time interval (z,. 1, ,,} may be put into the following
form:

» For each spot &,, compute the normal component of
the velocity u, =u(&,, 1,) -ny(§;). If u,, < — ¢ the activity flag
of the ith spot is raised; such spots are denoted by £ and
are referred to as generating spots. In the other case, if the
spot’s history flag is up, the newborn particle which is linked
to £, i1s freed; then, both flags of §, are lowered.

» For each generating spot whose history flag is down,
proceed as follows: Create a new particle which corresponds
to the amount of vorticity which has been shed by the
generating spot during the time interval (7., ¢, ., ,); the posi-
tion, strength, and volume of the particle in question are
given by

0
Xiltey 1} =57 +_!“(§f= L)

3 (4.2)
a,= —5l,61u(E 1) mET)  (43)
0,14 1) = 457 L 1) (44)

If the distance [x,(f, ., ) —& | is less than &/,/2, the spot’s
history flag is raised and the particle which has been
generated is given a status of a newborn particle that is
still linked to §; . If the distance from the particle to the
generating spot is greater than &/,/2, the spot’s history flag
is kept down and the newborn particle is freed.

» Let £ be a generating spot whose history flag is up.
Consider (x;{1,}, w,{1,), a;) the old position, strength, and
volume of the newborn particle that is still linked to the
spot. Since the newborn particle belongs to the set J, of the
particles which already exist, its new position and strength
are calculated according to the algorithm which is described
in the next subsection; let (x;(¢, ., ,), @, () be the new
position and strength of the particle in question. During the
time interval (1, ;. ), the generating spot has shed a new
particle (x;{t;, ), @/({x, (), a]) according to Eqgs. (4.2),
(4.3), and (4.4); then, the old particle and the new one are
lumped into one particle according to the following scheme:

Pp— (4.5)
apX;(te 1)+ X (e )
(t L 4.6
x,u( k1) ‘I,i+a} (4.6)
(1, +aiw!(t
wj(tk+1)“% J(l.-H) ij(k+l). (4.7)

'
a;+4a;
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If the distance between the resulting particle and the
generating spot is less than §/,/2, the spot keeps its history
flag up and the particle keeps its status of newborn particle
that is still linked to its generating spot. Otherwise, the
particle is freed and the spot’s history flag is lowered.

4.2, Convection and Diffusion of Particles of J,

In order to calculate the new locations of the particles of
the set J,., a numerical approximation of the velocity field
(2.4) is needed. For this purpose a particle approximation of
the inner vorticity field «% is sought. Recall that in the inner
domain ,, the vorticity field is known at the nodes (x;) of
a fmite differences lattice; denote by (@wi{x;)) the finite
differences approximation of the vorticity. Consider a
quadrature formula in €2, so that for a certain class of
smooth functions ¢ we have

[ smax=¥ g (48)

le b

where (f,),., are positive weights and (y,),.,. are
quadrature points. Interpolate the finite differences
approximation of w* on the quadrature points (§,),. .; let
(@%(7,)),¢ .. be the result of such an interpolation. A particle
approximation of w} is then given by

thlf = Z ﬁ!w‘;(%) S{x — vy,

le L

(4.9)

Note that the position and strength of the particles in
domain {2, are time independent. For the sake of legibility
let us set @, = B,0i(y,), @, = a,1.{1) @i (1), x,=y, and x; =
x;(1); then a classical approximation of the velocity field is
given by

T 0,VG,(x—x,)xk, {4.10)

jieJyu L

u(x) = ug(f )+

where VG, is a regularized approximation of the kernel VG
(e.g., see Raviart [13] for details on the regularization
technique). Indeed the sum appearing in (4.10) is calculated
by means of a fast algorithm of the type that has been
developed by Greengard and Rokhlin [5].

The new locations of the particles of J, are obtained by
solving the differential systems (3.16) by means of the
following scheme which is second-order accurate in time:

3
1) =)+ (s (4), 1)
&
—-gu(x,-(rb,), fe L) (4.11)
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The viscous diffusion of vorticity is taken into account
through the following classical conservative scheme (e.g.,
Raviart [13]}):

a;
+ Z 4!rf 5 Looi(te) —w ()]

fedy

lxj(lk)_xf(fk)ll
Xexp| — —__-W_ .

0 {teer)= (1)
(4.12)

4.3. Absorption of Outgoing Particles

We now describe how outgoing particles are smoothly
absorbed. Once a newborn particle is freed from its
generating spot, the particle is represented by a disk 4,(7;)
whose surface is equal to the particle’s volume a; and whose
center is located at x;(1,). Consider such a free particle of
index jeJ,. During the time interval {r, ¢, , ), this particle
is convected and diffused according to the algorithm
presented in Section 4.2; let {(x;(r, .. ), w;(fy ,,)) be its new
position and strength, and let ¢; be its volume. Then, there
are three possible cases:

e Ifd(t, ) is out of 2, the particle is no longer taken
into account in further computations; that is to say, the
particle is excluded from J, _ |.

» If d;(t,, ;) isin Q,, the particle is retained and stored
inJ, ..

e Ifd, (1, )~ {7 is not empty, the particle’s volume is
replaced by the volume of the domain 4,(¢,, )~ Q,, and
the new particle’s position is defined as being the geometric
barycenter of d,(t;,,)n€,. In algorithmic transcription
we have

@t )= @ty ), (4.13)
@ty ;) < volume[d; (1, ) N 82 ], (4.14)
X;{te ) < barycenter[d; (¢, ) 2,1 (4.15)

Note that the above algorithm allows the particles to
leave £2 smoothly as it is recommended by Eq. (3.15).

5. THE FINITE DIFFERENCES APPROXIMATION IN Q,

5.1. Considerations on Stability

Since different numerical techniques are used n 2, and
£2,, there is no reason for the stability conditions to be the
same¢ in each subdomain. In other words, different time
steps may be used in £, and 2,. Indeed, it has been found
that, due to time linearization in 2,, the CFL condition is
more restrictive in the inner domain than in the outer one.
In practice, stability is achieved if the time step in 2, is five
times smaller than that in Q. As a consequence, the domain
decomposition algorithm which has been presented in
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Section 2.4 must be slightly modified so that the stability
criteria are met. For this purpose the time interval (¢, 1, , )
is divided into M equal subintervals and an inner time
step 8t'=8¢1/M is defined. Denoting by y%™ and o™
approximations of ; and ®, on the time interval
(1 +(m—=1})dr, 1, +mdt’), where 1 <m< M, the system
of partial differential equations to be solved in @, , reads

aw‘,‘"”
gt

+V (@Y x (UK} = v Vi
(5.1)

V?wl;.m — __wllnm_

This problem is supplemented with boundary conditions on
B, and transmission conditions on I, as follows,

5.2. Approximation of the Boundary Conditions on B,

Assume for the sake of simplicity that the domain @, is
mapped to the unit square [0, 1] x [0, 1] by a conformal
mapping. Denote by (x, y) the coordinate system in the unit
square’s frame. Let w5 (x, 0) and ¢%™(x, 0) be the bound-
ary values of %™ and %™ on the obstacle, and denote by
dy the discretization step in the y direction. The formulae
used for approximating the boundary values of w*™ and

¥ on the obstacle are

myi .. . 1 =1
Vi, 0) = e | [ WA B )
5 z
+5- m‘;-"“‘(&,ay)dl(:)} (52)
B .

2
W06 0) = 5 WA (% 0= 4"~ b a9), (53)

where Y=y "M wf =i "M and k=1,

The two formulae above are first-order accurate both in
space and time. They have been found to be stable for
reasonable time steps. Qther choices are possible (e.g., see
Gresho [6] for a review on this issue).

5.3. Approximation of Transmission Conditions

kom

The transmission condition on wj
from (2.11) and is given by

is readily derived

wll(_ﬂ’l

(x)=wk(x —m ' v"), (54)

ifu*-m, <0, and
ofm(x)= 0t (x — 8t ut),

(5.5)

if u*.n, >0, where n, denotes the unit outward normal of
domain 0,
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The approximation of Y*™ on I requires that a surface
integral on the domain 2,02, (see Eq.(238)) is
approximated. Note that the quadrature technique which
has been developed for approximating the Biot and Savart's
integrals of the velocity field can be applied to the present
problem. That is to say, a suitable approximation of " on
Iy is given hy

W) R ug(te ) x-j—- Y 0.Gx—x))
iedyu L
o [ 9G(y—x)
— L] —gr d, (5.6)

where G, is a regularized approximation of G, (8,),.,, is the
particle approximation of w}, and (@;),., is the particle
approximation of w%” 7,

The remaining line integral on B, in {5.6} is approximated
by means of any standard one-dimensional quadrature,

5.4. Numerical Implementation

After a suitable linearization in time, the problem above
(ie, (S1)+((52), (5.3), (534), (55), (5.6))) is solved by
means of a finite differences method which is second-order
accurate in space and first-order accurate in time. The
method has been devised by Daube and Loc [4]. The flow
domain £, 1s mapped to the unit square, and the convec-
tion-diffusion equation for the vorticity is solved by means
of an alternate direction implicit {AD1) procedure. Centered
differences are used for the discretization of the spatial
derivatives. The Poisson equation for the stream function is
also solved by an ADI scheme (see [4] for other details).
Note that other numerical approximations which are
suitable for solving elliptic problems can be used, for in
domain , the elliptic nature of the flow is dominant (e.g.,
see Gresho [6] for a review on the numerical techniques
that can be used).

6. NUMERICAL RESULTS AND COMPARISONS

In order to illustrate the present method, comparisons
with well-documented experimental and numerical results
have been performed. In a first series of tests, we have com-
pared the results of the domain decomposition method with
that of the finite differences method when it is applied to the
whole domain €. In.Fig. 2 are reported the streamline
patterns of the flow about an almost-impulsively started
cylinder. The length scale is the cylinder radius, r, and the
velocity scale is the ultimate velocity at infinity, ¥ . The
results from the domain decomposition method are plotted
on the right of the figure and that of the finite differences
method are plotted on the left. The ultimate Reynolds
number, Re =2V, r/v, is equal to 3000. The interface I, is
a circle the radius of which is twice that of the cylinder. The
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FIG. 2. Domain decomposition method (right) versus finite difference
method on the whole fluid domain (left). Streamline patterns about an
almost-impulsively-staried cylinder.

good agreement between the two approaches is an indication
that the present domain decomposition method is consistent.

In a second series of tests, the numerical results have been
compared with experimental data (see Loc and Brouard
[11] for details on the experiment). In Fig. 3 are reported
comparisons between experimental (symbols) and numeri-
cal results (solid lines) for the radial velocity on the
symmetry axis behind the above mentioned cylinder. The
qualitative agreement between the results of the decomposi-
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FIG. 3. Comparison between numerical (solid lines) and experimental
(symbols) radial velocity profile on the symmetry axis behind the cylinder
for Re = 3000,
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FIG. 4. Karmann street behind a cylinder, Re =3000. Streamline
patterns (left), particles (right). From top to bottom: 1 =26, 28, 30, and 32.

tion method and the experimental data is quite good on the
whole range of time. Note that a slight discontinuity in the
slope of the numerical resuits is noticeable at x/r = 2. This
radius is that of the interface I, between the two domains.

In order to illustrate the fact that the present method
naturally puts discretization points in the flow regions
which are of interest, the calculation of the flow about the
above-mentioned cylinder has been slightly perturbed so
that a Karmann street spreads out. The streamline patterns
and the particles which have been shed between = 26 and
1=32 are plotted in Fig. 4; the time scale is /¥ . The
streamline patterns are plotted on the left and the particles
are plotted on the right. Note that the particles that are shed
in £, closely trace the vorticity in the cylinder’s wake;
hence, no computational effort is dedicated to the flow
region where the vorticity is zero. The inner domain Q,
{shown on the right-hand side figures) is a ring the width of
which is equal to one cylinder radius. The Strouhal number

B .1,
Eaan

FIG. 5. Streaklines about a cylinder at 7 = 50, Re = 3000,
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FIG. 6. History of lift (top) and drag (bottom} coefficients on the

cylinder 0 < 1 < 40, Re = 3000.

associated with the Karmann street is approximately equal
to 0.24. The experimental Strouhal number is about 0.21.

Figure 5 shows the streaklines about the impuisively
started cylinder at time 1= 50. The Reynolds number is
equal to 3000 and the finite differences domain is stiil
reduced to a ring, the width of which is set to one cylinder
radius. The Karmann street is clearly shown. This figure
illustrates the fact that the present technique is suitable for
convecting coherent structures on large distances without
introducing significant numerical diffusion. Moreover, this
technique does not require a transparent outflow boundary
condition on a distant artificial boundary.

In order to illustrate suitability of the present approach
for computing fluid-structure interactions we have plotted
the drag and lift time history of the above cylinder for
0 <7<40 in Fig. 6. Note that the frequency of the drag
oscillations is twice that of the lift osciliations, as expected.
The thickness of the lift coefficient curve is due to high
frequency numerical oscillations of small amplitude.

7. CONCLUSION

In this paper we have presented a domain decomposition
method for simulating external incompressible viscous
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flows. One original aspect of the present work consists in
coupling of two different numerical technigues within the
framework of a domain decompaosition method. Another
original contribution consists in the development of a vor-
tex method which is suitable for approximating first-order
linear hyperbolic probiems supplemented with Dirichlet
data.

For the sake of simplicity the flow domain has been
assumed to be one-connected; indeed, the present method
can be rcadily extended to the p-connected case with p
moving obstacles. Calculations with two and three moving
obstacles have been carried out and are reported in [ 7]. The
present approach is believed to be particularly adapted to
the multiple-moving-obstacle problem.

In order to increase the efficiency of the method some
technical improvements may be implemented. For example,
the ADI scheme that is used for solving the Poisson
problem of the inner problem may be replaced by a multi-
grid or a FFT algorithm. Some other formulations of the
Navier-Stokes equations can be used in £2,; some iesis on
the velocity-pressure formulation are under way. The
present approach is also being extended to problems
involving heat transfer.
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